Contaminated endoscopes; to worry about, to ignore or to combat?

The 20th World Sterilization Congress The Hague, 2019 Prof Dr. Margreet C Vos Clinical Microbiologist

Disclosures of Prof Dr Margreet C Vos, Erasmus MC Rotterdam, the Netherlands

- Unrestricted grant Pentax
- Unrestricted grant 3M
- Chair European Study group of Nosocomial Infections
- Chair of MRSA Working Group of International society of Antimicrobial Chemotherapy
- Projectleader of MACOTRA, MRSA clones
- Member of the Dutch guideline working group culture of endoscopes
- Member of the HIS/ESGNI/ESCMID infection prevention guideline "Rituals and behaviour in the operating theatre"

Content

- Impact
 - Infections by contaminated endoscopes
- Prevalence
 - Contamination of endoscopes
- Solutions

Focus on duodenoscopes (ERCP/linear endo-echoscopes) not colonoscopes/gastroscopes/bronchoscopes/etc

Impact; infections

- Tip of a huge iceberg
- Thanks to resistance
 - Sensitive/normal gutflora not/never detected, unless unusual

Infections post-ERCP are mostly assumed to be endogenous

Impact; Infections as a complication of ERCP

Source of bacteria;

Endogenous

inherent to the ERCP procedure, translocation of a patient's own flora

Exogenous¹

- contaminated ERCP duodenoscopes with
 - biomaterial of previous patients
 - Contamination by AER/drying/storage

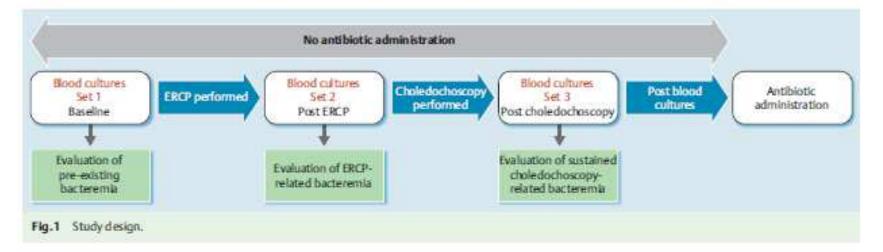
Risks;

- breaches in reprocessing²
- complex design^{3,4}

Kovaleva et al. 2013
 Muscarella 2014
 FDA 2015
 Verfaillie et al. 2015

Prevalence HAI post-ERCP; 4 years period, clinical samples, single center

Table 1 Prevalence of post-ERCP HAIs and biliary tract infectionsfor different types of ERCP operations


Operations	No. of operations	No. (%) of HAIs	No. (%) of bi tract infectio
Diagnostic ERCP	133	6 (4.51)	5 (3.76)
Diagnostic ERCP	133	6 (4.51)	5 (3.76)
Therapeutic ERCP	1610	126 (7.83)	65 (4.03)
Lithotomy of duodenal papilla	727	26 (3.58)	7 (0.96)
Biliary stent implantation	570	77 (13.51)	47 (8.25)
Pancreatic duct stent implantation	137	7 (5.11)	0 (0)
Bile duct lithotomy	69	7 (10.14)	4 (5.80)
Bile duct stent extraction and replacement	48	5 (10.42)	3 (6.25)
Other therapeutic ERCP	59	4 (6.78)	4 (6.78)
Total	1743	132 (7.57)	70 (4.02)

HAIs included biliary tract infections, transient primary bacteremia, and respiratory tract infections

ERCP endoscopic retrograde cholangiopancreatography, HAIs

healthcare-associated infections

Bacteremia following ERCP

Positive blood culture rate; 27,8%

Thosani et al, Endoscopy 2016; 48: 424-431

Erasmus MC

zafing

Bacteremia following ERCP; pre, per and post blood frequency of bacteremia

Age, years	Sex	Indica- tion ¹	Pre-ERCP blood culture Set 1	Post-ERCP blood culture Set 2	Post SOC blood culture Set 3	Organism	Development of post-proce- dure chills/ fever	Develop- ment of sepsis or cholangitis	Hospi- taliza- tion	Antibiotic treatment (duration in days)
79	М	1	No	No	Yes	Veilonella	Yes	No	No	Yes (3)
85	F	1	No	No	Yes	Klebsiella pneumoniae	Yes	No	No	Yes (3)
52	М	1	No	No	Yes	Escherichia coli	Yes	No	Yes	Yes (7)
53	M	3	No	No	Yes	Escherichia coli	Yes	Yes	Yes	Yes (14)
81	М	1	No	No	Yes	Klebsiella pneumonia Vancomycin-resistant Enterococcus	Yes	Yes	Yes	Yes (10)
70	М	1	No	No	Yes	Escherichia coli	No	No	No	Yes (7)
67	М	1	No	No	Yes	Pseudomonas aeruginosa	No	No	No	Yes (14)
32	М	3	No	Yes	No	Escherichia coli	No	No	No	No
53	F	2	No	Yes	No	Enterococcus casseliflavus	No	No	No	No
72	М	1	No	Yes	No	Enterococcus faecium	No	No	No	No
77	F	1	No	Yes	No	Bacteroides Fragilis	No	No	No	No
82	М	2	No	Yes	No	Escherichia coli	No	No	No	No
88	М	3	No	Yes	No	Veillonella	No	No	No	No
72	F	3	No	No	Yes	Escherichia coli	No	No	No	No
82	М	2	No	No	Yes	Streptococcus Viridans	No	No	No	No
85	М	1	No	No	Yes	Klebsiella pneumoniae	No	No	No	No
59	F	2	No	Yes	Yes	Clostridium spp. ² Bacteroides thetaiotaomicron	No	No	No	No
78	М	1	No	Yes	Yes	Citrobacter freundii Enterococcus gallinarum Escherichia coli	No	No	No	No
80	М	1	No	Yes	Yes	Enterococcus faecium	No	No	No	No
82	F	2	No	Yes	Yes	Escherichia coli	No	No	No	No

Antibiotic continued in 7/20 pts

ERCP, endoscopic retrograde cholangiopancreatography; SOC, single-operator choledochoscopy; M, male; F, female.

¹ Indication: 1 = evaluation of filling defect; 2 = evaluation/electrohydraulic lithotripsy of stone; 3 = evaluation/biopsy of stricture.

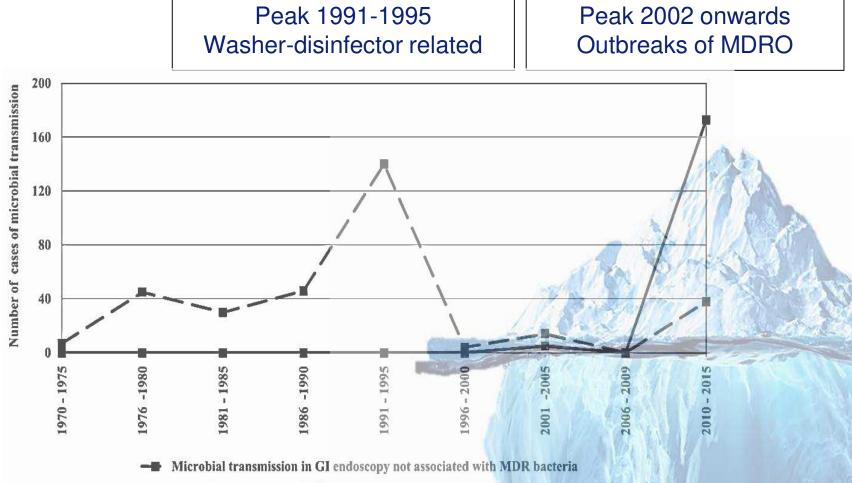
² Not Clostridium perfringens.

Thosani et al, Endoscopy 2016; 48: 424–431

Impact of contaminated endoscopes; Unresolved issue yet

Up until now;

 No data on <u>contamination of endoscope</u> before procedure and measurement infection after procedure


Question remains;

Is an infection related to a contaminated endoscope or is it endogenous?

- \rightarrow risk on exogenous infection is not known.
- \rightarrow risk on exogenous infections should be derived from outbreaks

→ Thanks to MDRO we are now aware?

Outbreaks related to endoscopes: tip of the iceberg

Erasmus MC

zalus

- 1. Kovaleva Best Practice & Research Clinical Gastroenterology 2016
- 2. Rubin Lancet Gastroenterology & Hepatology, 2018

ERCP outbreaks: a worldwide problem

- 2016 US Senate report:
 - Worldwide \geq 25 outbreaks with \geq 250 patient infections
 - 2012 spring 2015
 - Multi-Drug Resistant Organisms
 - Olympus, Pentax and Fujinon

Preventable Tragedies: Superbugs and How Ineffective Monitoring of Medical Device Safety Fails Patients

- Failure of adequate Adverse Event reporting
- "Likely that outbreaks in smaller hospitals were never identified"

Murray, P. United States Senate, 2016

Underreporting

Digestive Discuses and science.

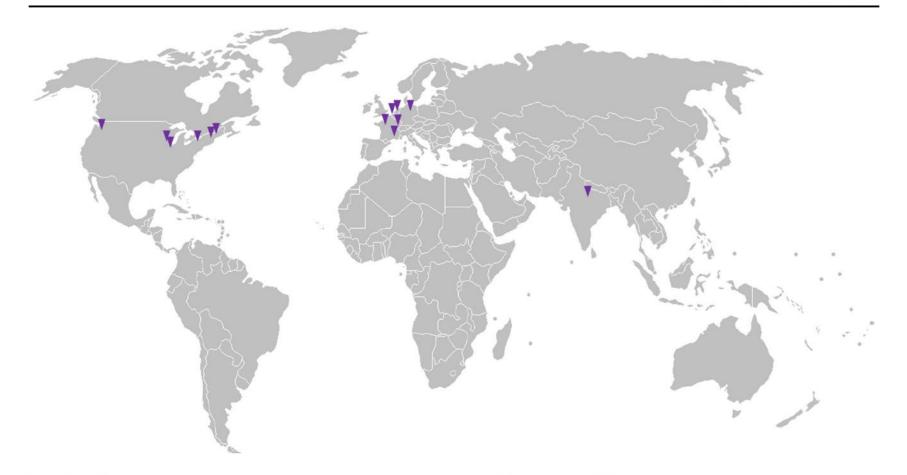


Fig. 1 Worldwide distribution of reported outbreaks of duodenoscopy-associated infections from 2000 to present

Rahman et al dec 2018 Digestive Diseases and Sciences

Breaking news; combination of MDRO and a procedure

A Killer on the Loose

Patients at UCLA were becoming deathly ill.

SUPERBUG SYMPTOMS?

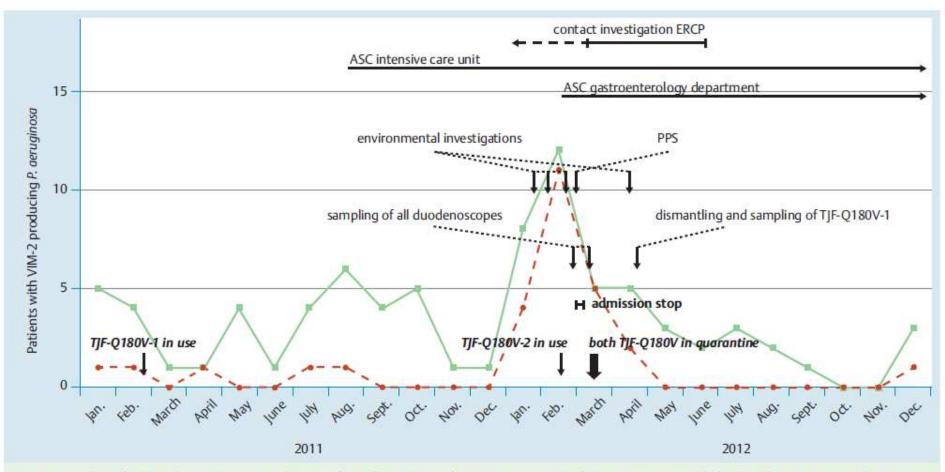
PROCEDURE

How a medical device maker kept U.S. hospitals in the dark about deadly infections

By CHAD TERHUNE AND MELODY PETERSEN DEC: 19, 2015

CNN Home

Understanding CRE, the 'nightmare' superbug that contribut for Angeles Times


Design of Endoscopic Retrograde in FDA reveals 142 Cholangiopancreatography (ERCP) Duodenoscopes May Impede Effective Cleaning: FDA Safety Communication

MDRO Outbreaks related to duodenoscopes

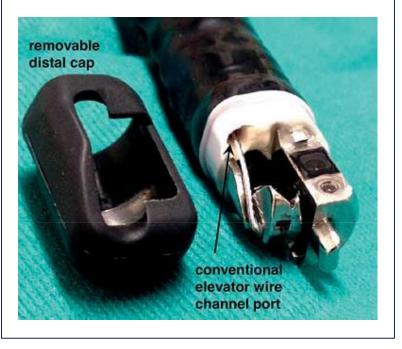
Year	Country	Microorganism	Duodenoscope	Infections / Transmissions
2009 - 2016 ¹	Spain	3 x KPC-producing <i>K. pneumoniae</i> 1 x ESBL- <i>E. coli</i> 9 outbreaks of non-MDRO	Unknown	Total # patients unknown 2 deaths
2015 ²	Colombia	KPC-producing K. pneumoniae	Unknown	3 (2 deaths)
2015 ⁵	Netherl.	VIM-2 Pseudomonas aeruginosa	Olympus TJF-180V	22
2016 ^{3,4}	France	OXA-48 producing K. pneumoniae	Olympus TJF-Q180V (Revised version)	5
20174	France	P. aeruginosa	Olympus TJF-Q180V	5
20174	Unknown	CTX-R <i>K. pneumoniae</i> (mobilized colistin resistance-1 gene)	Pentax ED-3490TK	2
20174	France	OXA-48 producing K. pneumoniae	Olympus TJF-Q180V	4
2019 ⁶	Netherl.	ESBL K.pneumoniae	Olympus TJF-Q180V	26

¹ García-Cano et al. Abstract DDW 2016 ² Valderrama et al. ODIS 2016 ³ Pietersen. LA Times 2017 ⁴ FDA/MAUDE 2017 ⁵ Verfaillie 2015 ⁶ Rauwers 2019

Withdrawal of a novel-design duodenoscope ends outbreak of a VIM-2-producing Pseudomonas aeruginosa"

Erasmus MC

zalus


Fig. 2 Timeline of outbreak management. Solid green line, all patients with VIM-2-positive *Pseudomonas aeruginosa*; dashed red line, patients with VIM-2-positive *P. aeruginosa* who underwent an ERCP. ASC, active surveillance cultures; ERCP, endoscopic retrograde cholangiopancreatography; PPS, point prevalence screening.

Positive culture for the outbreak strain

Complex ScopeTip Design & Changes

Initial design:

- side-facing tip
- elevator for guidewire or catheter
- elevator wire channel
- removable cap

- Novel design: TJF-Q180V
 - sealed protection cap
 - sealed elevator wire channel (O-ring)

Erasmus MC

zalus

 change from an open to a closed elevator channel

TJF-Q180V duodenoscope

Design modified:

Erasmus MC

Easier Cleaning (Unique Fixed Distal End Design)

In addition to the clinical performance benefits of the TJF-Q180V's locking mechanism, the elevator wire channel port is now sealed so separate cleaning is no longer necessary. The result is faster, easier cleaning that makes scope reprocessing more efficient.

Bron: Product Brochure Olympus F1322SE-1109

Removal of the plastic cap and sampling

Figure 9: (First two photos on the left) Cutting open and prying loose of the hard plastic cap on the tip. (Two photos on the right)

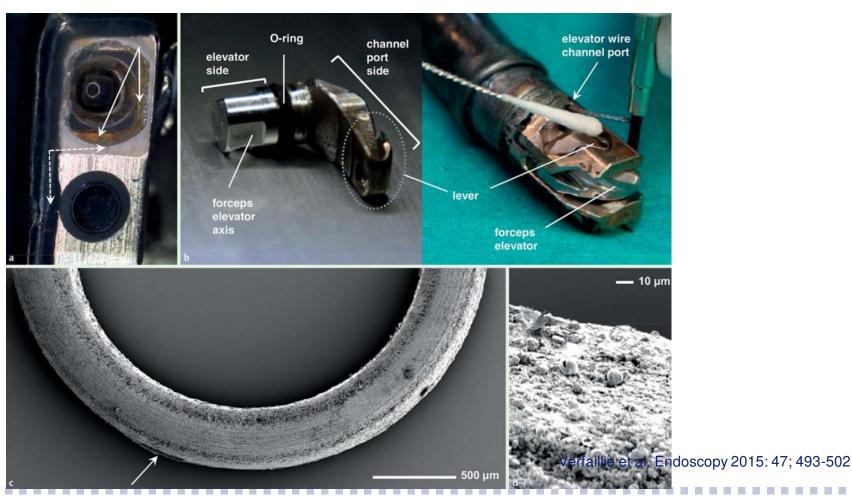
Sampling interior under the removed hard plastic cap

Source: Report TU Delft ; fig.9

Sampling behind the forceps elevator<

Figure 10: Sampling behind the forceps elevator (dismantled tip) with swabs and cytology brush.

Source: Report TU Delft ; fig.10


Erasmus MC

zafing

Outbreak investigation ERCP Scopes VIM-2-positive Pseudomonas

- Brown scale near camera lens and on the tip
- Brown scale at the inside part of the forceps elevator

Persistent contamination: outbreak risk

Erasmus MC

outbreak in Erasmus MC

Withdrawal of a novel-design duodenoscope ends outbreak of a VIM-2-producing Pseudomonas aeruginosa

- Genetically identical VIM-2 strain isolated from:
 - Forceps elevator recess
 - Protection cap
 - 22 patients infected
- No breaches in reprocessing procedures
- This endoscope; the source of the outbreak

How a medical device maker kept U.S. hospitals in the dark about deadly infections

By CHAD TERHUNE AND MELODY PETERSEN DEC. 19, 2015

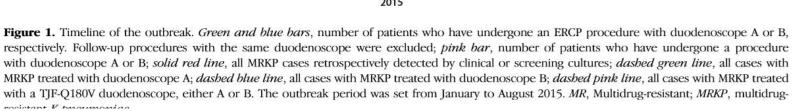
he hunt for a deadly superbug that sickened 22 patients at a Dutch hospital began just before noon on a spring day in 2012.

Inside a lab in the tiny hamlet of Zoeterwoude, a technician carefully peeled back the tip of a state-of-the art medical scope.

Timeline

Recent events involving scope-related outbreaks of antibiotic-resistant superbug infections

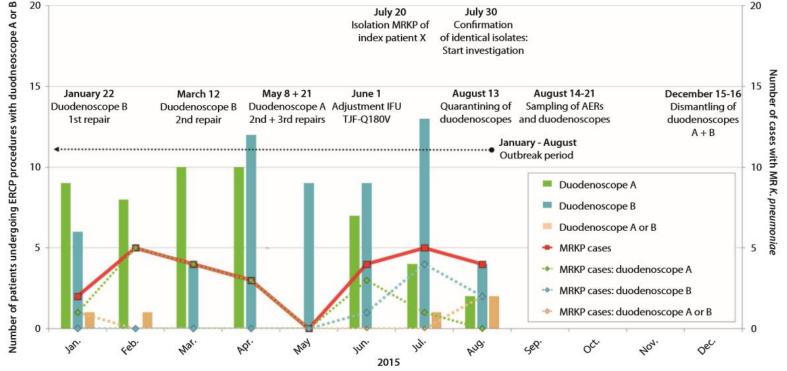
Second Dutch outbreak *K. pneumoniae* ESBL, Olympus TJF-180V



- Duodenoscope A;
 - First contaminated endoscope
 - Attack rate 35%; (17/49 pts)
 - Flush suction & biopsy channel positive culture
- Duodenoscope B
 - Second contaminated duodenoscope (6 mnths after A)
 - Attack rate 29% (7/24 pts)
 - Flush biopsy channel positive culture
- Patients; 15 by clinical samples, 11 by contact screening;
 10 infections (9 sepsis, 1 cholangitis)

Dutch outbreak K. pneumoniae ESBL **Olympus TJF-180V**

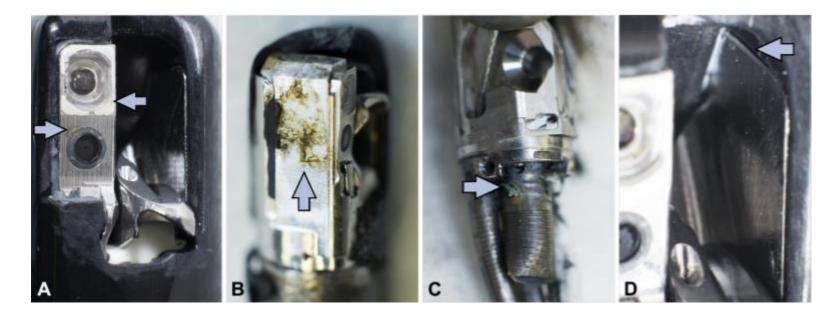
Contributing factors to an outbreak of multidrug-resistant K pneumoniae


20

20

Rauwers et al

Erasmus MC zalus


Reprocessing audit

- Deviations of IFU
 - Forceps elevator not moved in the upright position during cleaning
 - Not in the cleaning SOP
 - No switch to MAJ-1888 forceps elevator brush (Olympus; recommended June 2015, after start of the outbreak) yet, but use of BW-412T brush (formerly recommended)
 - Leakage test was not routinely performed, but on suspicion

Dismantling

A: Distal tip showing sludge behind the glass that covers both lenses
B: Dismantled distal tip: a brown layer on the frame and the cover plate incorrectly reused and reattached by soldering after repairs.
C: Dismantled distal tip; incorrect fastening of the biopsy channel to the distal tip.
D: Distal tip showing unwanted space between the tip frame and the protective cap

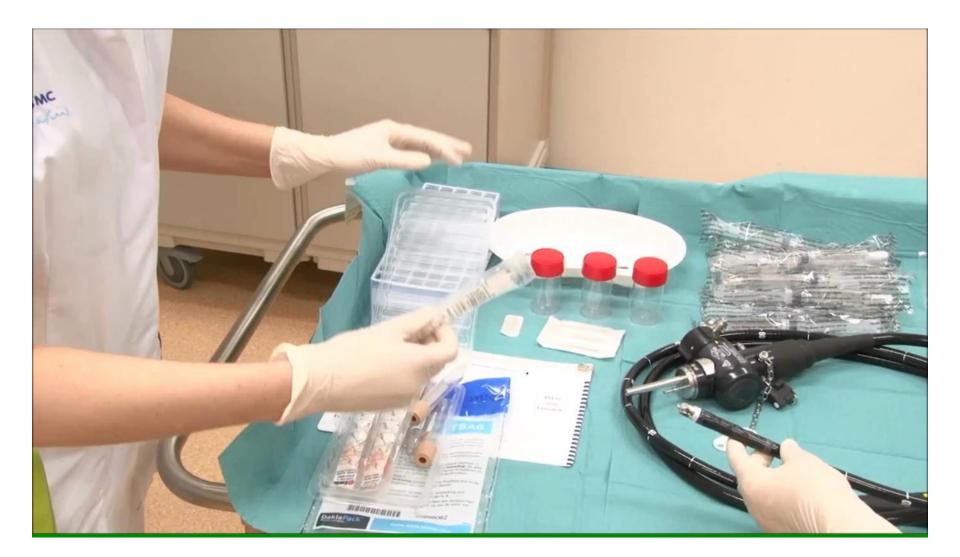
Why such large outbreaks?

- Breaches in cleaning disinfection
 - Only our center (and Utrecht..) ? = single/duo center problem
 - Complex design? = general problem

 \rightarrow 2 nation-wide studies on prevalence of contaminated endoscopes

Content

- Impact
 - Infections by contaminated endoscopes
- Prevalence
 - Contamination of endoscopes
- Solutions



1; To determine the **bacterial contamination** of reprocessed **duodenoscopes** in the Netherlands

2; To determine the **risk factors** of **bacterial contamination** of reprocessed **duodenoscopes** and **linear echoendoscopes** in the Netherlands

Methods: sampling video instructions and **Erasmus MC** sample kit

zafing

Methods:two studies, same design

- Prospective, cross-sectional studies including all Dutch ERCP centers
 - June 2015 March 2016; Process 1
 - October 2016 May 2017; Process 2
- Sampling by local staff
- Inclusion of Duodenoscopes (Process 1) and Echo-endoscopes (Process 2)

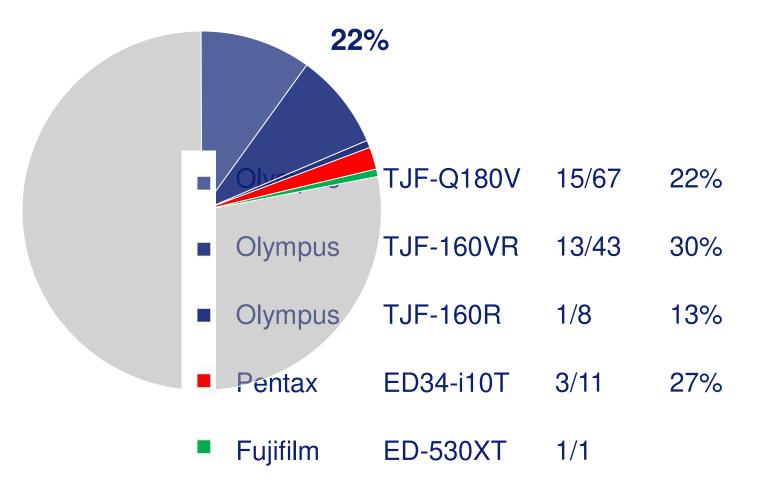
Methods: interpretation

Two contamination definitions:^{1,2,3}

- 1. Any microorganism with ≥20 colony forming units (AM20)
- 2. Microorganisms with gastrointestinal or oral origin (MGO)

Definitions in Scope Contamination

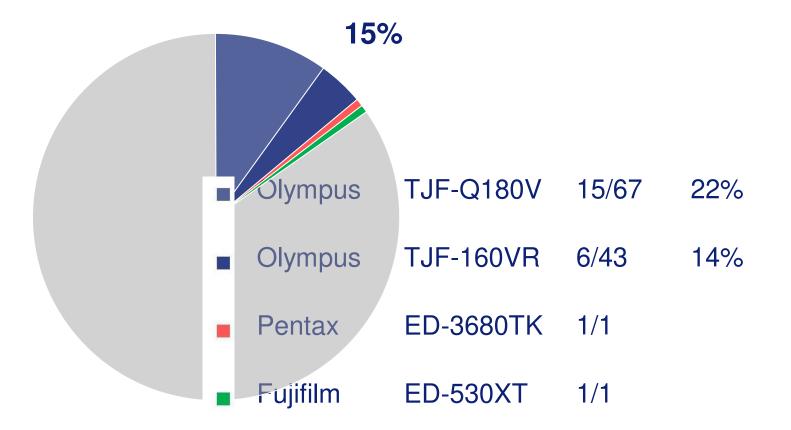
Microorganism categories



- Definition contaminated duodenoscope^{1,2}
 - AM20: ≥1 microorganism with ≥20 colony forming units (CFU)
 - MGO: microorganisms with gastrointestinal or oral origin, independent of CFU count

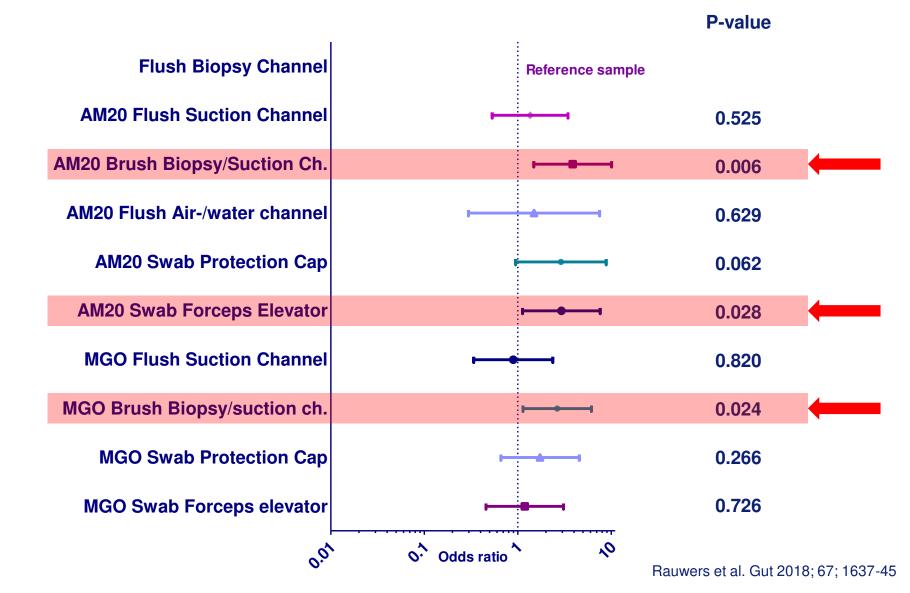
¹ Beilenhoff 2007 ² SFERD 2013

PROCESS 1 Duodenoscope Culture Study Contamination according to AM20

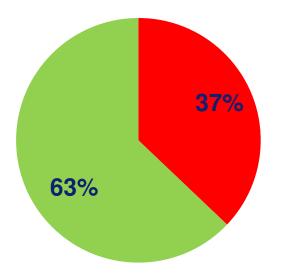


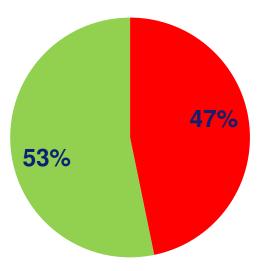
Rauwers et al. Gut 2018; 67; 1637-45

PROCESS 1 Duodenoscope Culture Study Any presence of gut or oral flora



Rauwers et al. Gut 2018; 67; 1637-45


PROCESS 1 Duodenoscope Culture Study Predilection sites for contamination

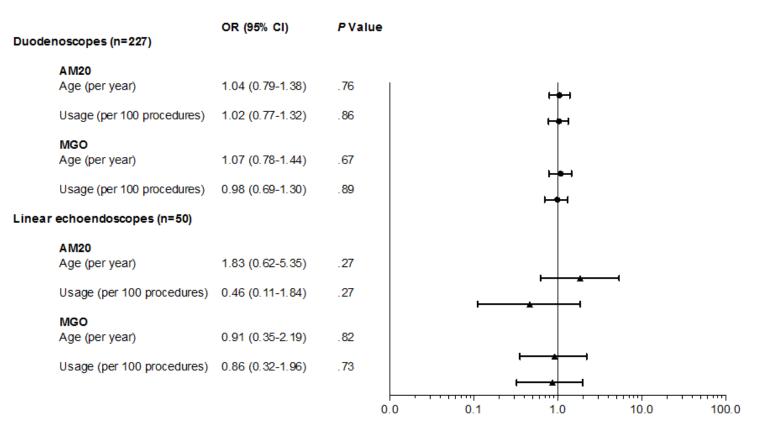

ERCP/EUS centers (*n* = 62):

- ■≥1 MGO DLE
- No contaminated DLE

■ ≥1 MGO or AM20 DLE

No contaminated DLE

37% (23/62 centers) ≥1 DLE with gut or oral flora


47% (29/62 centers) ≥1 Contaminated DLE

Risk factors for contamination

Figure 2. OR for age and usage on AM20 and MGO contamination in DLEs.

Abbreviations: DLE, duodenoscopes and linear echoendoscopes; AM20, microbial growth with \geq 20 colony forming units/20 mL of any type of microorganism; MGO, presence of any microbial growth of gastrointestinal or oral microorganisms.

Rauwers et al submitted

et al submitted

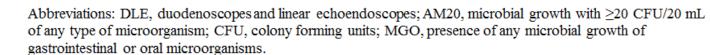
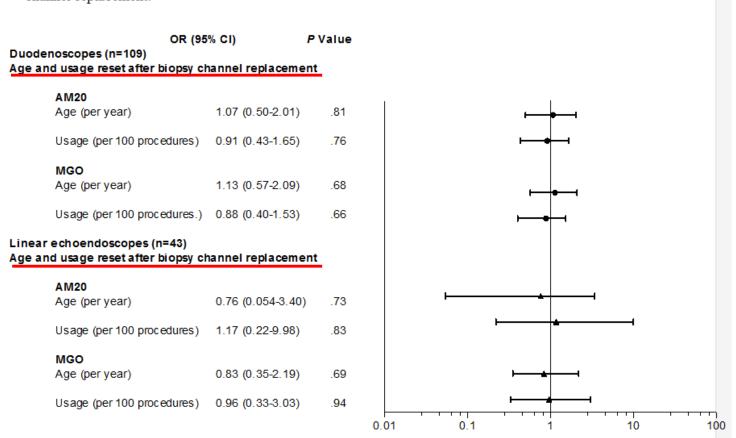



Figure 3. OR for reset age and usage on AM20 and MGO contamination in DLEs with information on biopsy channel replacement.

Results

Process 1 vs Process 2

- Contamination:
 - √22% vs 13% contaminated (AM20)
 - ✓15% versus 14% with any presence of gut or oral flora

✓ 39% vs 47% centers with at least 1 MGO or AM20 contaminated DLE

- → Comparable results: no lasting effect
- \rightarrow Linear echoendoscopes have the same contamination risk

In our study; Contamination is NOT related to wear and tear

Rauwers et al. Gut 2018; 67; 1637-45

Rauwers et al submitted

How often are DLE contaminated?

Single center incidence	Definition	Scope type	
Monthly cultures ¹	≥100CFU/ endoscope or Indicator MO	Duodenoscopes	35%
Yearly cultures ²	25CFU/ endoscope or indicator MO	Duodenoscopes	24%
Monthly cultures ³	10 CFU/ endoscope	Duodenoscopes	5%
Post procedure cultures ⁴	Any growth pathogenic MO Any growth all MO	Duodenoscopes	2% 13%
Monthly cultures ⁵	Any growth of CRE	Duodenoscopes	1,2%
Post procedure cultures ⁶	High-concern organisms	Duodenoscopes	0,7%
Post procedure ⁷	Any growth gram- bacteria	Linear echoendos.	4,2%
Multicenter incidence	Definition	Scope type	
	Bollindon	00000 ()00	
Daily cultures, 21 centers ⁸	Any growth enteric bacterial flora Any growth all MO	DLE	1% 9%
	Any growth enteric bacterial flora		
Daily cultures, 21 centers ⁸	Any growth enteric bacterial flora Any growth all MO	DLE	
Daily cultures, 21 centers ⁸ Multicenter prevalence	Any growth enteric bacterial flora Any growth all MO Definition	DLE Scope type	9%
Daily cultures, 21 centers ⁸ Multicenter prevalence Canada – 37 centers ⁹	Any growth enteric bacterial flora Any growth all MO Definition ≥10CFU/ml	DLE Scope type Duodenoscopes	9% 30%

1.Saliou, Endoscopy 2016; 2. Saviuc, ICHE 2015; 3. Heroux, AJIC 2015; 4. Ross, GIE 2015; 5. Naryzhny, GIE 2016; 6. Higa, GIE 2018; 7. Chapman, GIE 2017; 8. Brandabur, GIE 2018; 9. Alfa, ICHE 2002; 10. Ofstead, AJIC 2018, 11. Rauwers, Gut 2018; 12. Decristoforo, Clin Microbiol Infect 2018

Prevalence; conclusions

- Depending on surveillance
 - Frequency
 - Definitions
 - Culture methods

 Gut/oral flora; about 15% of all endoscope are contaminated and used....

→To worry about...

 \rightarrow High attack rate, high number of serious infections

But why??

A few remarks on...

- Reprocessing
- Storage
- Biofilm

Reprocessing

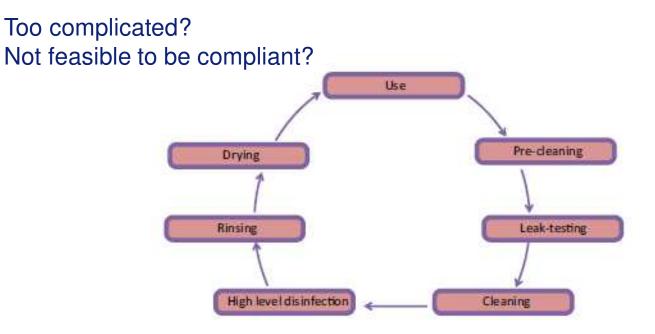


Fig. 3 Steps of a duodenoscope reprocessing

ESGE – **ESGENA** position paper

- Patients information; benefits and risks
- Trained and competent personnel
- Manufacturers; instructions on use and reprocessing
- Reprocessing protocols and equipment based on the manufacturer's instructions for each endoscope model.
- Type-specific, single use cleaning brushes
- Bed side cleaning, followed by leak testing, manual cleaning steps, and automated reprocessing

 \rightarrow Human error and inaccurate handling; pitfall

Beilenhoff Ulrike et al. Endoscopy 2017; 49: 1098–1106

Storage

J. Kovaleva / Journal of Hospital Infection 97 (2017) 319-328

323

Table II

Key points of the drying and storage procedures of flexible endoscopes according to several guidelines

Guideline	Use of alcohol flush	Manual drying	Use of drying/storage cabinet	Recommended storage time	Use of compressed air	Use of HEPA filters	Routine microbiological surveillance of endoscopes
AORN [34,35]	NR	NR	Yes	NR	Yes	Yes	Yes
ASGE [36,37]	Yes	Yes	NR	NR	NR	NR	No
BSG [38,39]	No	NR	Yes	72 h 3 h (if HEPA filters not used)	Yes	Yes	No
ESGE/ESGENA [6]	No	If necessary	Yes	NR	Yes	NR	Yes
CDC/FDA [4,40,41]	Yes	Yes	NR	NR	NR	NR	Yes
GESA [42]	Yes	NR	Yes	12 h (duodeno- and bronchoscopes) 72 h (other)	Yes	NR	Yes
HTM [43-45]	NR	NR	Yes	NR	Yes	Yes	Yes
PHAC [46]	Yes	Yes	Yes	7 days	NR	NR	No
SFED/HCSP [47-49]	NR	NR	Yes	72 h (≤7 days)	Yes	Yes	Yes
SFERD/WIP [50,51]	NR	NR	Yes	1 month	Yes	Yes	No
HGR/AZG [52,53]	Only if the AER out of service (HGR)	Only if the AER out of service (HGR)	Yes	1 month	Yes	Yes	Yes
SGNA [54]	Yes	Yes	Yes	7 days	NR	NR	NR
WEO/WGO [55]	Yes	Yes	Yes	NR	NR	NR	NR

AER, automated endoscope reprocessor; AORN, Association of periOperative Registered Nurses; ASGE, American Society for Gastrointestinal Endoscopy; AZG, Agentcshap Zorg en Gezondheid; BSG, British Society of Gastroenterology; CDC, Centres for Disease Control and Prevention; ESGE/ ESGENA, European Society of Gastrointestinal Endoscopy/European Society of Gastroenterology and Endoscopy Nurses and Associates; FDA, Food and Drug Administration; HCSP, High Council of Public Health; HGR, Hoge Gezondheidsraad; HEPA, high-efficiency particulate air; HTM, Health Technical Memorandum; GESA, Gastroenterological Society of Australia; NR, no recommendation; PHAC, Public Health Agency of Canada; SFED, French Society of Digestive Endoscopy; SFERD, Steering Group for Flexible Endoscope Cleaning and Disinfection; SGNA, Society of Gastroenterology Nurses and Associates; WEO, World Endoscopy Organisation; WIP, Infection Prevention Working Group; WGO, World Gastroenterology Organisation.

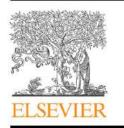
Storage; no consensus

Table III

Maximum safe storage time (shelf-life) for endoscopes suggested in the literature

Published studies	Types of endoscope tested	Storage time
Alfa et al. [3]	ERCP endoscopes	2 days
Brock et al. [71]	Gastro-, duodeno- and colonoscopes	21 days
Cooke et al. [63]	Not specified	3 days
Grandval et al. [64]	Gastro-, duodeno- and colonoscopes	3 days
Ingram et al. [72]	Colonoscopes	8 weeks
Osborne et al. [62]	Lower and upper	1 day
	GI endoscopes	(5 days may
		be safe)
Pineau et al. [65]	Colono-, duodeno- and enteroscopes	2-3 days
Richard et al. [66]	Not specified	3 days
Rejchrt et al. [67]	Upper GI, duodeno- and colonoscopes	5 days
Riley et al. [68]	Colonoscopes	7 days
Riley et al. [69]	Colonoscopes	7 days
Vergis et al. [70]	Colono- and	7 days
	duodenoscopes	(possibly up
		to 14 days)

ERCP, endoscopic retrograde cholangiopancreaticography; GI, gastrointestinal.


Storage time; 1 day to 21 days

Erasmus MC Cafung

Biofilm...

American Journal of Infection Control 42 (2014) 1203-6

Contents lists available at ScienceDirect

American Journal of Infection Control

journal homepage: www.ajicjournal.org

Major article

Correlation between the growth of bacterial biofilm in flexible endoscopes and endoscope reprocessing methods

Wu Ren-Pei MD^{a,1}, Xi Hui-Jun MD^{a,1}, Qi Ke MD^a, Wang Dong MD^a, Nie Xing PhD^b, Li Zhao-Shen PhD, MD^{a,*}

^a Department of Gastroenterology, Changhai Hospital of Second Military Medical University, Shanghai, China ^b National Center for Nanoscience and Technology of Chinese Academy of Sciences, Beijing, China

Channels; provided by endoscope repair centers of Olympus, Pentax, Fujifilm in China. 66 suction and biopsy channels and 13 water and air channels (disassembled) 66 endoscopic centers

 \rightarrow EM scanning; 36 / 66 (55%) and 10/13 (77%) obvious biofilm growth.

F	lospitals without l	oiofilm		Erası
ble 1 mmary of answers to ocedures in 66 hospit	the follow-up ques	tionnaire for en Hospitals wit	ndoscope repro	ocessing
Characteristic and Recommendation	Group A $(n = 30)$	Group B $(n = 36)$	$\frac{\text{Total}}{(N = 66)}$	P value
Daily surgical volume				.239
<5	70.0 (21/30)	83.3 (30/36)	78.8 (51/66)	
50-100	16.7 (5/30)	13.9 (5/36)	15.2 (10/66)	
>100	13.3 (4/30)	2.7 (1/36)	7.6 (5/66)	
Proportion of manual cleaning	50.0 (15/30)	91.7 (33/36)	72.7 (48/66)	.001
Suctioning all channe	1 90.0 (27/30)	83.3 (30/36)	86.4 (57/66)	.670
Use of biofilm remova detergent		0 (0/36)	12.1 (8/66)	.003
Repeated use of deter	gent 63.3 (19/30)	91.7 (33/36)	78.8 (52/66)	.005
Sterile water used to	rinse 60.0 (18/30)	61.1 (22/36)	60.6 (40/66)	.927
Alcohol dry	76.7 (23/30)	38.9 (14/36)	56.0 (37/66)	.002

NOTE. Values are percentages (compliance with recommendations for reprocessing or characteristic).

Factors associated with biofilm; manual cleaning, repeated use of detergent, not using biofilm removal detergent and/or alcohol dry. **Conclusion; biofilm is quite common....**

- Impact
 - Infections by contaminated endoscopes
- Prevalence
 - Contamination of endoscopes
- Solutions

Solutions;

- Improved Quality Assurance
- Alternative approaches to reprocessing
- New technologies

Solutions;

- Improved Quality Assurance
 - Surveillance
 - Microbial
 - ATP
 - Inspection
- Alternative approaches to reprocessing
- New technologies

Surveillance

- Microbiological surveillance
 - Not a routine practice in The Netherlands (until 2018) and U.S.A.^{1,2}

- Advised in ESGE, French and Australian guidelines^{3,4,5}
- Differences in:
 - Sampling and culturing technique
 - Frequency: monthly to yearly

1. SFERD 2016 2. Petersen et al. GIE 2016 3. Beilenhoff et al. Endoscopy 2007, 4. Ministere des affaires sociales et de la sante, 2016, GESA/GENCA 2010, 5. Murray et al. 6. US Senate report 2016

Indicator microorganisms

NVMM 2018 Gut/oral flora	CDC 2015 High-concern MO	ESGE 2007 Indicator MO	France 2016 Indicator MO
Enterobacteriaceae	Gram-negative	Enterobacteriaceae	Enterobacteriaceae
Ps aeruginosa	bacteria	Enterococci	Enterococci
S. aureus	Enterococci		Pseudomonas spp
Enterococci	Staphylococcus	Pseudomonas	Stenotrophomonas
Stenotrophomonas	aureus	aeruginosa	maltophilia
maltophilia		+ other gram-negative	Acinetobacter spp
Acinetobacter spp		nonfermenters	Staphylococcus aureus
Candida spp			Candida spp
		Staphyloccus aureus	

Staphylococcus epidermidis

Atypical mycobacteria Legionella organisms

Dutch culture guideline NVMM 2018

Starting point;

- Recommended frequency; depending on the results of the prevalence the frequency of next measurements is given
- Positive results \rightarrow culture frequency increases

Dutch surveillance guideline 1

What's new?

- Starts with a prevalence culture measurement of all endoscopes
- "how to" and "what to do in case of..."
- Depending on the micro-organisms; action

→Micro-organisms; gut-oral/water/skin

→Gut–oral; scope in quarantaine

 \rightarrow Water-skin; repeat cleaning disinfection

- Depending on the number of scopes found positive;
 - repeating frequency of prevalence measurement;
 - \rightarrow 2 scopes with gut-oral flora; repeat after 2 weeks

 \rightarrow 2 scopes with skin or water flora; repeat after 2 mnths

 \rightarrow No scope positive; repeat after 6 mnths

Dutch surveillance guideline 2

• Other actions;

→Gut-oral flora ≥ 3 positive findings ≥ 2 different scopes in 4 weeks;
 →Audit department on cleaning and disinfection and flushing

→Skin flora ≥ 6 positive findings in ≥ 2 different scopes in 3mnths;
 →Audit storage en culturing

→Water flora ≥ 6 positive findings in ≥ 2 different scopes in 3mnths;
 →Control AER/culture water

Dutch surveillance guideline 4; risk management; the hardest issue!


In case of gut flora;

• OMT, risk analysis

Consider;

- M.O and sensitivity pattern
- Decide on recall action by estimated risk on transmission of viruses HBV HCV (HIV)
- Decide on contact-tracing in case of HRMO:
 - Consider risks (LTX and CRE), treatment options (hardly any in HRMO) and burden for patients

Solutions;

- Improved Quality Assurance
 - Surveillance
 - Microbial
 - ATP
 - Inspection
- Alternative approaches to reprocessing
- New technologies

Recent ATP studies

Encounters	ATP Outcomes after manual cleaning, culture outcomes after HLD
10 gastro / 10 colo / 10 duo 8 radial/ 10 linear ¹	48 Biopsy-suction channels ATP < 200RLU 19/20 elevator channels ATP >200RLU
304 coloscopes 143 gastroscopes ²	3/304 (1%) coloscopes ATP >200 RLU 74/143 (52%) gastroscopes ATP >200RLU
390 duodenoscopes ³	ATP testing and cultures after HLD No correlation was found.
60 gastroscopes ⁴	31 ATP >200 RLU of which 7 post HLD contaminated 26 ATP <200 RLU of which 2 post HLD contaminated
20 duodenoscopes ⁵	18/20 (90%) ATP > 200RLU 12/20 (60%) post HLD contaminated any growth ATP testing compared to cultures: Sensitivity 30% Specificity 53%
Systematic review 10 studies	ATP does not correlate with cultures during and after reprocessing

However.... No controlled studies!

1. Sethi et al. GIE, 2016 2. Ofstead et al. Am J Inf. Control, 2016 3. Olafsdottir et al. Infect control Hosp Epidemiol, 2016

4. Parohl et al. GMS Hyg Inf Control, 2017 5, Visrodia et al. GIE, 2017

Diversity in tests and frequency; an international survey in 39 countries

 Table 2 Assessment methods and frequency for flexible endoscope reprocessing

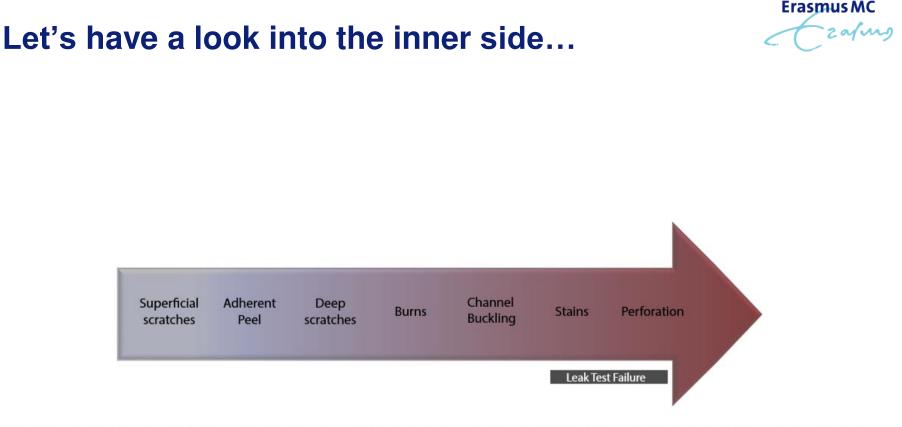
Test	Every scope	Once a week	Once a month	Twice a year	Once a year	Never
Microbial culture	9%	6%	18%	25%	11%	31%
TOSI tm	23%	10%	14%	6%	9%	38%
Final Rinse water test	15%	10%	22%	15%	10%	28%
Routine ATP	12%	5%	8%	12%	4%	59%
Routine protein test	11%	6%	7%	7%	7%	62%
Routine Other	12%	5%	10%	12%	7%	54%
AER Documentation	63%	5%	3%	6%	4%	19%

ATP Adenosine Triphosphate, AER Automated Endoscope Reprocessor

Thoughts on ATP.....

- Clean= <200 relative light units</p>
 - equated to 10-4 CFU/cm2
 - = 10-6 CFU per endoscope

because the surface area of an endoscope channel is >100 cm2.


→An endoscope assessed as clean by ATP could still have a significant microbial load (eg, 10-6).

 \rightarrow Role of ATP in endoscopes not resolved yet

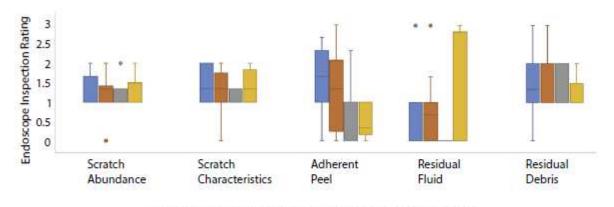
Solutions;

- Improved Quality Assurance
 - Surveillance
 - Microbial
 - ATP
 - Inspection
- Alternative approaches to reprocessing
- New technologies

Figure 1. Schematic depicting the full spectrum of working channel damage from mild to severe: superficial scratches and scratches with adherent peel are almost ubiquitous and are consistent with normal wear and tear. The significance of deeper scratches and burns is uncertain, and these findings should trigger discussion with the manufacturer. Channel buckling may compromise the channel lumen, may impair the ability to advance accessory devices, and may impair manual cleaning. Channel repair is indicated. Perforations and related stains usually fail leak testing, and channel repair is indicated.

Scope the scope!

alanassan


E	rasn	nus	MC
	\leftarrow	20	1.1
6	(200	,
	<u> </u>		

Study	Borescope device (manufacturer)	No. of endoscopes (endoscope type); no. of inspections	Borescope examination findings	Biomarker correlation	Interobserver variability
Ofstead et al, 2016-2017 ²⁻⁴	Flexible Inspection Scope; (HealthMark Industries, Fraser, Michigan)		Discoloration, scratches, debris (% NR) iluid 95% after limited drying (including cloudy fluid in which simethicone was detected) 85% required repair	ATP and microbial cultures performed but not correlated with borescope examination findings	NR
Ofstead et al, 2018 ⁵	Ultra-Thin HQ Micro Borescope (Medit Inc, Winnipeg, Canada); Flexible Inspection Scope (Healthmark Industries, Fraser, Michigan)	45 endoscopes (13 colon, 12 gastro, 5 duo, 3 echo, 3 cysto, 3 uretero, 3 broncho, 2 intubation, 1 endobronchial EUS)	Discoloration, white/black residue, scratches, non- intact channel lining, debris, dented channels (% NR) Fluid 47% (21/45)	Residual fluid associated with higher ATP values after HLD ($P < .01$) and microbial growth ($P = .028$)	NR
Barakat et al, 2018 ⁶	SteriCam (Sanovas Inc, San Rafael, California)	68 endoscopes (16 AC, 17 PC, 23 gastro, 7 duo, 5 echo); 85 total inspections	Scratches 99% (67/68) Scratches with peeling 77% (52/68) Minor debris 96% (65/68) Fluid 43% (29/68) (predominantly clear, occasionally opaque) Channel buckling 3% (2/68)	Residual fluid associated with higher ATP values after HLD ($P < .0001$ independent; P = .03 clustered)	<i>R</i> mean values (3 endoscopists): Scratches 0.39 Fluid 0.89
Thaker et al, 2018 ¹	SteriCam (Sanovas Inc, San Rafael, California)	59 endoscopes (14 duo, 24 echo, 10 gastro, 11 colon); 97 total inspections	Discoloration 59% (35/59) Scratches 86% (51/59) Shredding 59% (35/59) Debris 22% (22/97) Fluid 8% (8/97)	NR	NR

AC, Adult colonoscope; ATP, adenosine triphosphate; duo, duodenoscope; echo, echoendoscope; gastro, gastroscope; HLD, high-level disinfection; NR, not reported; PC, pediatric

What about the channel? Has the channel dried properly?

Gastroscope Colonoscope Duodenoscopes Linear Echoendoscopes

Figure 3. Graphic box plot representation of investigator ratings for scratch abundance and characteristics, scratches with adherent peel, and residual fluid and/or debris. Boxes represent the interquartile range. Horizontal lines within boxes represent the median rating. Whiskers represent the lowest or highest data point still within a 1.5-multiple of the interquartile range. Dots represent outliers.

Scratches; 98.5% Scratches and peeling; 76.5% Residual fluid; 42.6% Small foci of minor debris; 95.6%

Endoscope length did not predict residual fluid Biofilms were not evident in any endoscope working channel; visible?

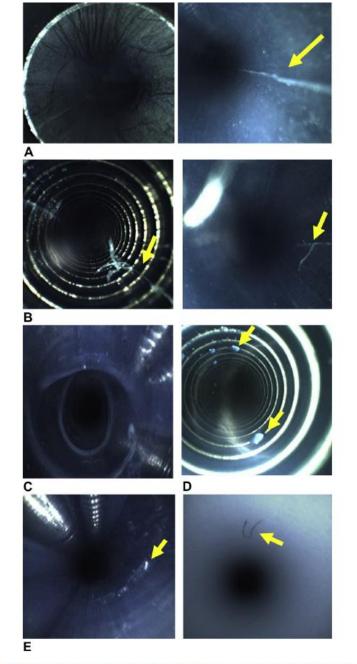


Figure 2. Images depicting working channel damage and residue visualized in endoscopes. A, Superficial scratches at the inlet region (*left*) and along the endoscope shaft (*right*). B, Scratches with adherent peel, perpendicular to circular rings of the endoscope bending segment (*left*) and along the endoscope shaft (*right*). C, Channel buckling of the endoscope shaft. D, Drops of residual fluid. E, White punctate (*left*) and black linear (*right*) residual debris.

strointest Endosc 2018;88:601-11

ATP and scope the scope

- ATP values negative; range 3 to 87, median 10 (after HLD)
- Significant higher ATP values with;
 - residual fluid
 - Iatency from reprocessing
- Endoscope channel diameter/length;
 - Did not predict increased ATP
- Number of lifetime uses:
 - Did not predict ATP, working channel damage, residual fluid, or residual debris

Erasmus MC Cafung

Solutions;

- Improved Quality Assurance
 - Surveillance
 - Microbial
 - ATP
 - Inspection
- Alternative approaches to reprocessing
- New technologies

Double HLD

Study question;

- Compare the effectiveness of single HLD versus double HLD in eliminating residual enteric pathogen growth in DLE
- 4 endoscopy facilities.
- daily cultures of stored DLEs

Randomized on single or double HLD

Double HLD

Outcome;

- N= 5850 surveillance culture specimens
- N= 2925 encounters, 45 DLEs in clinical use (including 7 on loan)
- Microbial contamination:
 - N= 235 specimens (4.0%) or 224 encounters (7.7%)
- High-concern pathogens:
 - N= 8 specimens (.1%) 8 encounters (.3%) from 5 different endoscopes.
- Median number of days between reprocessing and culturing was 1

Double HLD

Erasmus MC					
\langle	Crafing				

Facility	Culture date	Duodenoscope and linear echoendoscope identification	High-level disinfection method	High-concern pathogen(s) detected
A	2/26/2016	1	Single	Enterococcus spp
A	4/8/2016	2	Double	Enterococcus spp
A	4/29/2016	2	Single	Enterobacter cloacae
A	5/6/2016	3	Double	Aeromonas spp
A	8/8/2016	4	Double	Escherichia coli (ESBL+), Enterococcus spp
В	7/15/2016	5	Single	E coli (ESBL-) and Enterococcus faecalis
В	7/29/2016	5	Single	E coli (ESBL+) and Enterococcus faecalis
В	8/1/2016	5	Single	Enterococcus faecium

FSRI + extended spectrum B-lactamase: + positive: - penative

High-concern pathogens positive cultures; In 5 endoscopes from the elevator mechanism, 2 separate facilities

Persistent growth;

2 duodenoscopes: E. faecalis on 3 occasions, E coli on 2 of the 3 occasions, 1 ESBL

 \rightarrow No significant differences between single HLD and double HLD

Bartles gastrointest endosc 2018

Double HLD

What a pity...

"....High-concern pathogens were defined as potentially pathogenic enteric flora and included Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Enterococcus spp, Enterobacter cloacae, Aeromonas spp...."

"...Coagulase-negative Staphylococci, Bacillus spp, coryneform grampositive bacilli, and other gram-negative glucose-nonfermenters were Misclassified... considered environmental colonizers...."

Missing...

O Why?

 \rightarrow Underpowered

Erasmus MC

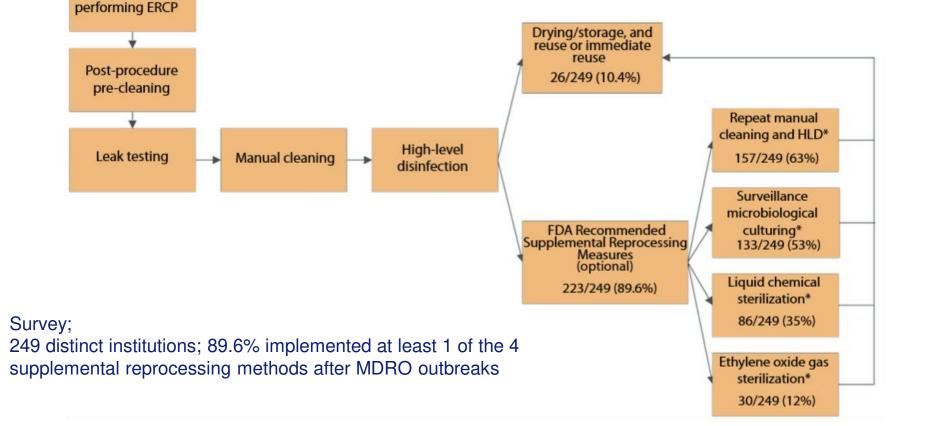


Figure 1. Flow diagram of duodenoscope reprocessing steps, including FDA recommended supplemental reprocessing methods and survey responses from unique centers. Results are non-exclusive. *FDA*, United States Food and Drug Administration; *HLD*, high-level disinfection. *Results are non-exclusive.

Reprocessing practices in USA; the extra's

249 unique centers

Erasmus MC Calmo

Thaker 2018 Gastrointest Endosc

What do we do extra?

	Number of	N . Card
	centers	% of total
Total number of centers	249	-
Supplemental reprocessing method*		
Repeat high-level disinfection	157	63.1
Surveillance microbiological culturing	133	53.4
Liquid chemical sterilization	86	34.5
Ethylene oxide (EtO) sterilization	30	12.0
None of the above	26	10.4
Additional measures*		
Patient MDRO screening	38	15.3
ATP testing	84	33.7
Drying technique*		
Ventilated cabinet	152	61.0
Hang overnight	134	53.8
Forced-air drying	119	47.8
None (used immediately)	22	8.8
Other	11	4.4
Unknown	8	3.2

Large variation...

MDRO, Multidrug-resistant organism; ATP, adenosine triphosphate. *Results are non-exclusive.

Erasmus MC Zafung

Content

Erasmus MC Cafung

Solutions;

- Improved Quality Assurance
 - Surveillance
 - Microbial
- Alternative approaches to reprocessing
- New technologies

Re-Design of an ERCP Scope ED34-i10T2 vs. ED34-i10T

ED34-i10T

.

Reprocessable Cap

Disposable Elevator

U.S. Food and Drug Administration Protecting and Promoting Your Health							A to Z Index
	Home	Food	Drugs	Medical Devices	Radiation-Emitting Products	Vaccines, Blood & Biologics	Animal & Veterin
New	s & E	vent	S				
Hom	Home News & Events Newsroom Press Announcements						

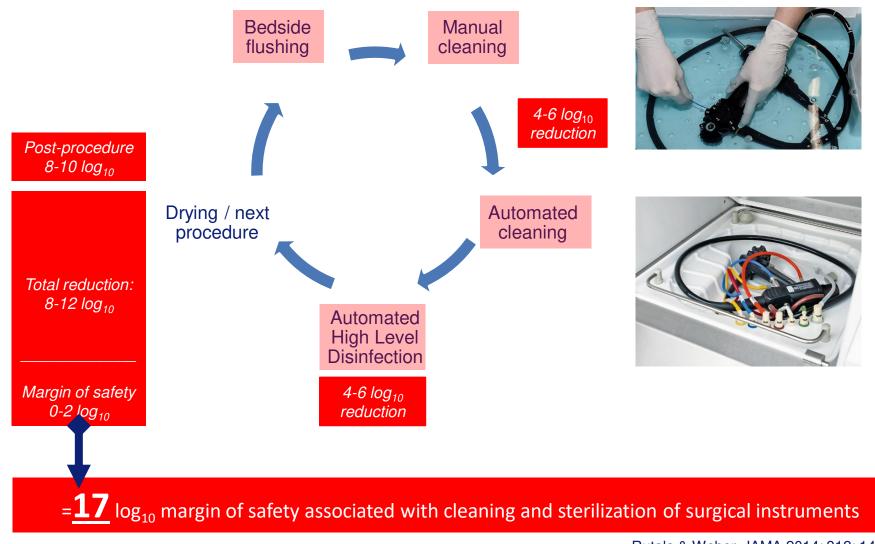
FDA News Release

FDA clears Olympus TJF-Q180V duodenoscope with design modifications intended to reduce infection risk

SHARE	TWEET	LINKEDIN	PIN IT	EMAIL	PRINT		
For Imme Release	diate	Janua	ary 15, 201	16			
Release		The U	The U.S. Food and Drug Administration today cleared the Olympus TJF-Q180V				

Erasmus MC Not the (I)onelyone..... → much focus on Olympus new design, but all brands and types are at risk..... (case reports, Process 1 and 2)

zalus


PENTAX		👗 Contact Us 🛛 C	Search						
MEDICAL		Home » News & Events » News » Press Releases							
Events		Urgent Field Correction: Updated Instructions for Use for PENT Duodenoscope	AX Medical ED-3490TK Video						
News	~	February 19, 2016							
Press Releases		Dear Valued Customer,							
		The purpose of this communication is to inform you that PENTAX Medical is is Instructions for Use (IFU) [S041_R00] and Operation IFU [Z933_R06] for the F Duodenoscope. The Reprocessing IFU includes updated validated procedure and sterilization. The Operation IFU provides instruction to the user for the det channel and ensures consistent reference to the Reprocessing IFU for direction disinfection and sterilization of the ED-3490TK. Both sets of instructions should For your convenience paper copies of the Reprocessing and Operation IFUs a	PENTAX Medical ED-3490TK Video s for cleaning, high level disinfection, tection and resolution of a clogged on regarding the cleaning, high level d be implemented as soon as possible.						
		This action is being taken as a result of publicized reports of multi-drug resistal Endoscopic Retrograde Cholangiopancreatography (ECRP) procedures. Given caution, PENTAX Medical has been working with the U.S. Food and Drug Adm reprocessing procedures that are provided in the updated Reprocessing IFU.	n these reports, and in an abundance of						

Revised Instructions

/nentav/senvice/usa?lang-en

Scope Reprocessing

Erasmus MC

Rutala & Weber. JAMA 2014; 312: 1405-6

Solution; sterilization (not new, but new for endoscopes)

Most flexible endoscopes belong to category semi critical; HLD

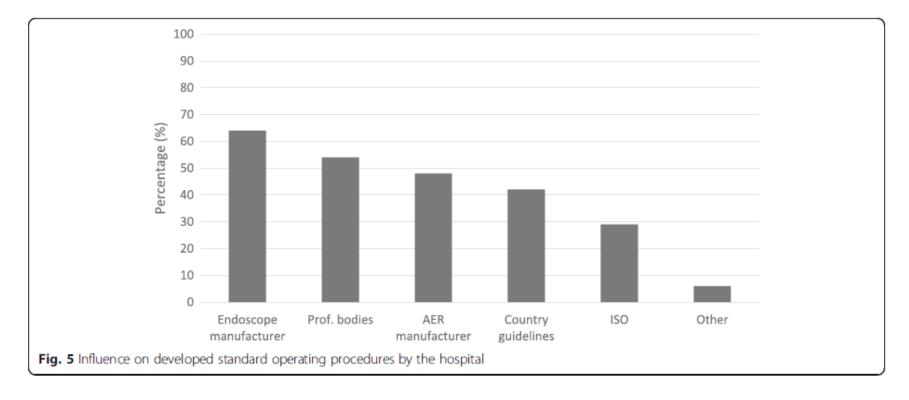
But;

- Endoscopes often enter non-sterile cavities; ideally be sterilized?
- \rightarrow sterilization;
 - \rightarrow more time
 - \rightarrow more resource intensive
 - \rightarrow more damaging to endoscope components

Alternatives...

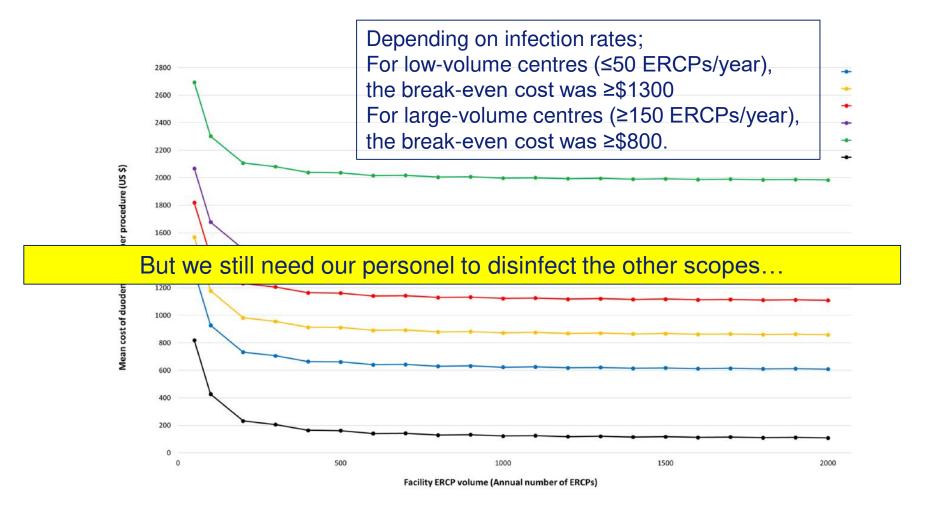
Table 1

Summary of advantages and disadvantages of HLD and sterilization enhancements for reprocessing duodenoscopes


Method	Advantages	Disadvantages		
Steam, sterilization	 Rapidly microbicidal Least affected by organic or inorganic soils among sterilization processes listed Rapid cycle time 	 Deleterious for heat-sensitive instruments At present they cannot be used because current GI scopes are not heat resistant 		
Hydrogen peroxide gas plasma, sterilization	 Cycle time is ≥28 min, and no aeration necessary Used for heat- and moisture-sensitive items because process temperature <50°C Compatible with most medical devices 	 Endoscope or medical device restrictions based on lumer internal diameter and length GI scopes cannot be processed No microbicidal efficacy data proving SAL 10⁻⁶ achieved Studies question microbicidal activity in presence of organic matter and salt May damage endoscope 		
100% ETO, sterilization after HLD, microbiologic surveillance	 Single-dose cartridge and negative- pressure chamber minimizes the potential for gas leak and ETO exposure Simple to operate and monitor Compatible with most medical materials Major endoscope manufacturer offers ETO as sterilization option Ideally, ETO should be used after standard HLD Some data demonstrate reduced infection risk with HLD followed by ETO 	 Requires aeration time to remove ETO residue Only 20% of U.S. hospitals have ETO on-site Lengthy cycle and aeration time No microbicidal efficacy data proving SAL 10⁻⁶ achieved Studies question microbicidal activity in presence of organic matter and salt ETO is toxic, a carcinogen, flammable May damage endoscope 		
Vaporized hydrogen peroxide, sterilization	 Fast cycle time (55 min) Used for heat- and moisture-sensitive items (metal and nonmetal devices) 	 Endoscope or medical device restrictions based on lumen internal diameter and length GI scopes cannot be processed No microbicidal efficacy data proving SAL 10⁻⁶ achieved No data demonstrating microbicidal activity in presence of organic matter and salt May damage endoscope 		

W.A. Rutala, D.J. Weber / AJIC 44 (2016) e47-e51

...we still need HLD...



Who is in the lead? Where do 39 countries listening to?

Kenters et al. Antimicrobial Resistance and Infection Control (2018) 7:153

Disposable at what costs?

Figure 1 Line graph of the mean cost of duodenoscopes per procedure (US \$) according to infection rate and annual ERCP volume. ERCP, endoscopic retrograde cholangiopancreatography.

Bang JY, et al. Gut 2019;0:1-3. doi:10.1136/gutjnl-2019-318227

Erasmus MC

Summary

- Gastrointestinal endoscopy has been associated with more health careassociated outbreaks than any other medical device.
- \rightarrow Burden of disease has to be determined
- Recent outbreaks related to duodenoscopes have occurred despite following guidelines
- → Tip of the iceberg; MDRO noticed
- Prevention requires
 - strict adherence to current guidelines.
 - → Too many rules to adher to? In other words; too complex to be succesful?
 - \rightarrow Too contaminated and complex to rely on HLD?

Conclusions

- The burden of disease by contaminated endoscopes is not known
- The rate of contaminated endoscopes is high
- There is no agreement on anything (reprocessing method, storage, drying, surveillance, burden)
- The solution is far away;
 - Brand new endoscopes for every procedure?
 - Sterilization?
 - New design?

Awaiting solutions.....

- Microbiological surveillance
- Teach to clean; improve/adherence
- Monitor outcomes

Contaminated endoscopes....

To worry....YES To ignore;NO To combatYES

ACKNOWLEDGEMENT

Thanks to my researchers / colleagues
 Prof Dr Marco Bruno
 Arjen Rauwers PhD
 Judith Kwakman PhD

And many others at ErasmusMC...

- Department of Medical Microbiology and Infectious Diseases
 - Unit Infection Prevention
 - Unit Clinical Microbiology laboratory
- Department of Gastroenterology and Hepatology
 - Reprocessing staff
- Office Medical Devices
 - DSRD / DSMH