DGSV Deutsche Gesellschaft für Steritgutversorgung e.V. **Dr. Matthias Tschoerner** # Characterization of surface alterations on surgical instruments caused by silicates and titanium oxides # Characterization of surface alterations on surgical instruments caused by silicates and titanium oxides Wolfgang Fuchs¹, Elisabeth Schneider – 1 – AKI – Working Group Instrument Reprocessing: Aesculap AG, Tuttlingen Dr. Matthias Tschoerner¹ – 1 – AKI – Working Group Instrument Reprocessing: Chemische Fabrik Dr. Weigert GmbH und Co. KG, Hamburg #### 1: Characterization of surface alterations EDX-Analysis (Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy) XPS-Analysis (ESCA / XPS - X-ray Photoelectron Spectroscopy) Cytotoxicity (EN ISO 10993-5; EN ISO 10993-12) #### 2: Mechanical Stressing Mechanical Stress: elastic and plastic deformation with scanning electron microscopic imaging #### 3: Conclusion # Surface alterations on surgical instruments after reprocessing #### Characterization of surface alterations #### SEM-EDX, Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy Information depth 1 – 3 μm Tachoerner, M., ZAHN PRAX 16, 5, 274-277 (2013) #### Characterization of surface alterations ESCA / XPS – Electron scatering for Chemical Analysis / X-ray Photoelectron Spectroscopy - Information depth 1 10 nm - Si E_b 102,8 eV → chemical shift specific for bonding state: SiO₂ - Depth profiling by sputtering with Ar → layer thickness approx. 10 nm Tschoerner, M., ZAHN PRAX 16, 5, 274-277 (2013) #### Cytotoxicity Strong spots due to silicate deposits during sterilization in the autoclave. EN ISO 10993-5, EN ISO 10993-12 EDX and XPS-Analysis: Probes from clinics Osteotom Wound hook golden Wound hook green Wound hook blue Wound hook grey #### Osteotom, EDX | Element analysis | С | 0 | SI | Cr | Fe | |------------------------|------|------|------|------|------| | Instrument
material | 8,23 | 2,91 | 0,41 | 13,7 | 73,2 | | Discolored
Surface | 4,49 | 0,86 | 0,37 | 14,4 | 79,9 | #### Osteotom, XPS | Element analysis | С | 0 | Si | Ti | Cr | Fe | |--|----|------|-----|----|-----|-----| | Discolored Surface | 79 | 15,4 | 1,4 | - | 0,4 | 0,4 | | Discolored Surface,
4 min sputtered | 56 | 23,2 | 1,5 | • | 3,9 | 6,6 | ## Wound hook blue, EDX | Element
analysis | С | 0 | Si | n | Cr | Fe | |------------------------|------|------|------|------|------|------| | Instrument
material | 2,02 | | 0,58 | 0.37 | 13,7 | 83,3 | | Discolored
Surface | 0,9 | 1,59 | 0,22 | 1,24 | 8,35 | 86,0 | ESS Amelina Fin Amening - Probe Will Stay ESS Analog (II, Mingert - Proba Shilling ## Wound hook blue, XPS | Element analysis | С | 0 | SI | Ti | Cr | Fe | |--|----|------|-----|------|-----|------| | Discolored Surface | 76 | 17,3 | 0,6 | 1,5 | 0,3 | 0,7 | | Discolored Surface,
4 min sputtered | 17 | 46,9 | | 13,8 | 1,9 | 18,8 | discoloration like condensation droplets on all surface structures silicic acid deposits caused by contaminated sterilization steam gold-brown to blue-violet, iridescent, uniformly discoloration of smooth highgloss stainless steel surfaces Titanium oxide layers (ca. 10 nm) caused by traces of titanium minerals in silicate-containing cleaners # Mechanical Stressing on Instruments with Titanium Oxide Layers and Silica Deposits \Rightarrow Bending test in the area of elastic and plastic deformation with SEM imaging before and after the test (SEM, resolution < 2 μ m) Picture A (start condition) Bending 2 mm (elastic deformation) Picture B1 (elastic deformation) Bending 4 mm (plastic deformation) Picture B2 (plastic deformation) #### **Bending Test** #### Parameter: Deformation: 2 mm (elastic) 4 mm (plastic) 5 N Initial force: Test speed: 5 mm/min #### Conclusion: - The discolorations are caused by a few nm thin titanium oxide layers and silicate layers. - After mechanical stressing, no changes in the surface structure were observed for all characterized linings. No disruption or detachment were observed with SEM. - Due to mechanical stress, no particles of SEM detectable size were separated from the test instruments. - The investigated deposits show no cytotoxic properties. Thanks for your attention! Questions?