

Deutsche Gesellschaft für Storilgutversorgung e.V.

WORLD (

Proposal for controlling the maintenance of sterility at the sterility assurance level up to the point of use

Hartmut Dunkelberg

Topics

- Quality risk management of maintenance of sterility;
- Compatibility of the packaging filtration efficiency with the airborne microbial challenge during the post-sterilization period;
- Long-term recording of the airflow into the packages;
- Current concepts to control maintenance of sterility;
- Infection risks associated with exposure to terminally sterilized items which don't meet the sterility assurance level 1:1,000,000;
- Use of Cold Atmospheric Air Plasma Sterilization and continuous monitoring of the airborne microbial challenge for in-process control of maintenance of sterility;

18TH WORLD STERILIZATION CONGRESS

Quality risk management of maintenance of sterility

18TH WORLD STERILIZATION CONGRESS

Compatibility of the packaging filtration efficiency with the airborne microbial challenge during the post-sterilization period

18TH WORLD STERILIZATION CONGRESS

Calculation of the compatibility of the packaging filtration efficiency with the airborne microbial challenge Law of Boyle (1662) and Mariotte (1676): P x V = const. Airborne microbial challenge:

Charles law (1780): V ~ T

$$\frac{V}{T_1} = \frac{V}{T_2}$$

$$N_O \times \frac{100 - Filtration efficiency (\%)}{100} \le 10^{-6}$$

Airborne microbial challenge: $N_0 = \Delta V_{t+p}$ [m³] x n [CFU/m³]

where

Т

n

No

- V_{1,2} = packaging volumes,
- ∆ V_{t+p} = volume of airflow into the package,
 - temperature of the gas (measured in Kelvin),
 - = airborne microbial load
 - = airborne microbial challenge

18TH WORLD STERILIZATION CONGRESS

Long-term recording of the airflow into the packages

18TH WORLD STERILIZATION CONGRESS

18TH WORLD STERILIZATION CONGRESS

Shelf life calculation for different packagings based on air pressure recordings from July 15 to August 2, 2017 and on an airborne microbial load of 200 CFU/m³

Packaging material	Volume	Filtration eff.	Shelf life	
	[ml]	(%)	w = weeks, d = days	
Paper/film pouches	150	98.40 ²⁾	3 d	
Paper/film p. (double wrapped)	150	99.97 ²⁾	6 w	
Tyvek® 1059B pouches	150	> 99.991)	18 w	
Baskets, double wrapped medical paper	2600	99.999 ²⁾	8 w	
Baskets, Kimguard One- Step KC 400	2600	> 99.991)	9 d	

1) Data of filtration efficiency was taken from manufacturer's IFU; 2) determined by exposure chamber method

18TH WORLD STERILIZATION CONGRESS

Current concepts to control maintenance of sterility

18TH WORLD STERILIZATION CONGRESS

CDC: Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008

"... many hospitals have switched to an event-related shelf-life practice. This latter practice recognizes that the product should remain sterile until some event causes the item to become contaminated (e.g., tear in packaging, packaging becomes wet, seal is broken)."

Assumed reasons why a data-based controlling the impact of the airborne microbial challenge was not introduced to protect sterility of sterilized items

- Electronic devices to register and to manage the cumulative airflow into the packages are missing;
- Manufacturers of packaging materials hesitate to present relevant test results that show the limitations of the barrier performance.

Infection risks associated with exposure to terminally sterilized items which don't meet the sterility assurance level (SAL)

18TH WORLD STERILIZATION CONGRESS

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Fungal Infections Associated with Contaminated Methylprednisolone in Tennessee

Marion A. Kainer, M.B., B.S., M.P.H., David R. Reagan, M.D., Ph.D., Duc B. Nguyen, M.D., Andrew D. Wiese, M.P.H., Matthew E. Wise, Ph.D., Jennifer Ward, M.S., Benjamin J. Park, M.D., Meredith L. Kanago, M.S.P.H., Jane Baumblatt, M.D., Melissa K. Schaefer, M.D., Brynn E. Berger, M.P.H., Ellyn P. Marder, M.P.H., Jea-Young Min, Pharm.D., M.P.H., John R. Dunn, D.V.M., Ph.D., Rachel M. Smith, M.D., John Dreyzehner, M.D., M.P.H., and Timothy F. Jones, M.D., for the Tennessee Fungal Meningitis Investigation Team*

N Engl J Med 2012;367:2194-203.

18TH WORLD STERILIZATION CONGRESS

Spread of hospital acquired infection caused by recontamination of formerly sterile products

- Contamination of a large stock volume, that is used for thousands single-dose products;
- Storage for a prolonged period that growth to higher microbiological burden can occur;
- Application at high risk sites.

18TH WORLD STERILIZATION CONGRESS

Sporadic device-associated infections caused by compromised packaging integrity are difficult to identify

- because the microbiological status of the unopened device can no longer be examined,
- because the cases occur isolated in time and location.

18TH WORLD STERILIZATION CONGRESS

Use of Cold Atmospheric Air Plasma Sterilization and continuous air quality monitoring for in-process control of maintenance of sterility

18TH WORLD STERILIZATION CONGRESS

Cold air plasmasterilization in a storage cabinet: results with the settle plate method

Inside the cabinet

Outside the cabinet

18TH WORLD STERILIZATION CONGRESS

Efficiency of Cold Atmospheric Air Plasma Sterilization on the airborne microbial load (number of CFU/300 cm²)

Stage	1		111	IV	Mean
Outside	80	90.2	79.5	14.5	66.6
Inside	3	2	3	3	2.8

Reduction factor: 24

18TH WORLD STERILIZATION CONGRESS

Shelf life calculation of wrapped sterilized products stored at estimated 10 CFU/m³: results are based on air pressure recordings from July 15 to August 2, 2017

Packaging	Volume	Filtration efficiency	Shelf life			
	(cm ³)	[%]	w = weeks, y = years			
Deper/film neurol			W Weeks, y - years			
Paper/film pouches,	150	99.97	120 w			
double wrapped						
Tyvek® 1059B	150	> 99.99	> 5 y			
pouches						
Baskets, double	2600	99,999	207 w			
	2000	55.555	201 00			
wrapped paper		Lange and the second second second				
Baskets, Kimguard	2600	> 99.99	21 w			
One-Step KC400						
One-Step NO400	A CONTRACTOR OF THE OWNER					
18TH WORLD STERILIZATION	CONGRESS	BONN GERM	ANY OCTOBER, 4-7, 2017			
ion nonco orentelennon						

Summary

 The compatibility of the barrier properties of the packaging with the airborne microbial challenge can be controlled by an automated long-term measurement system.

 A data based assessment of the maintenance of sterility at the sterility assurance level of 1:1,000,000 can help prevent hospital acquired infections.

Thanks

I would like to thank Dr. Marco Waßmann and Mr. Joachim Ebert, Laboratory of General Hygiene, University of Goettingen, for technical support and assistance.

Thank you for your attention

18TH WORLD STERILIZATION CONGRESS