

DGSV

Deutsche Gesellschaft für Sterilgutversorgung e.V.

WORLD (CENTER

Holger Biering

Assessment of biocompatibility of chemicals used for decontamination of medical instruments

Agenda

- Why biocompatibility assessments of process chemicals?
- Objectives for biocompatibility expert working groups.
- Test protocol to assess biocompatibility.
- Determination of acceptance level at user site.
- Summary.

WHY BIOCOMPATIBILITY ASSESSMENTS OF PROCESS CHEMICALS?

- European Medical Device Directive requires risk assessment of safety-related characteristics of medical devices before first use.
- Same safety level for processed medical devices like new one.
- Manufactures of washer-disinfectors must specify tolerable residues according to ISO 15883.
- ISO 15883 describes no methods how to do this.
- One element is the biocompatibility of process chemical residues.

OBJECTIVES FOR BIOCOMPATIBILITY EXPERT WORKING GROUPS

- Process chemical manufactures used different test protocols for biocompatibility assessments.
- Set up expert working groups by the industrial organization of German process chemical manufactures (IHO) with following goals:
 - Development of a common test protocol to asses the biocompatibility of process chemical residues.
 - Formulation of uniform methodologies for determination of tolerable residual amounts.

· First decision in the working group:

Test protocol should be based on ISO 10993 "Biological evaluation of medical devices".

- ISO 10993 Part 1 "Evaluation and testing within a risk management system" describes required tests depending on
 - nature of body contact and
 - contact duration

between medical device and human tissue and/or body fluid.

 Following tests are proposed for surgical instruments, rigid and flexible endoscopes with limited contact time (<24h):

- Sensitization
- Irritation
- Systematic toxicity (acute)
- Cytotoxicity
- Haemocompatibility
 (in some cases)

If applicable:
Formula can be
evaluated based on raw
material data

Tests are required

Products tested:

- Product A: liquid disinfectant containing 10-25% glutaraldehyde, 10-25% ethanol and water.
- Product B: liquid two component disinfectant, Component 1 containing 1-5% peracetic acid, 8-35% hydrogen peroxide, <10% acetic acid and water, Component 2 containing 2-5% sodium hydroxide and water.
- Product C: liquid disinfectant and detergent containing <10% quaternary ammonium compound (QAC), <10% diamine, non-ionic surfactants, solvents, complexing agents and water.
- Product D: liquid detergent containing 5-15% fatty alcohol alkoxylate, solvent and water.

First test level: Detection of concentration limits in solutions:

- Solutions with different concentration (1.0, 0.1, 0.01, 0.001, and 0.0001 Vol-%) are prepared.
- These solutions are mixed with the cell culture medium (Dulbecco's Modified Eagle Medium-DMEM).
- Aliquots of 100 µl are pipetted into the cell culture plate.
- Incubation for 72 ± 6 h at 37 ± 1 °C.
- Measurement of protein content.
- · Calculation of proliferation inhibition.

First test level: Detection of concentration limits in solutions:

Concentration		Formulation				
Vol-%	ppm	Product A	Product B	Product C	Product D	
1	10,000	100	100	100	100	
0.1	1,000	100	100	100	100	
0.01	100	100	12	100	100	
0.001	10	8	0	65	78	
0.0001	1	0	2	22	23	

Values greater than 30 % proliferation inhabitation - in red - are classified as being cytotoxic

Product A: Glutaraldehyde based disinfectant

Product B: Buffered Peracetic Acid based disinfectant

Product C: QAC + Diamine based disinfectant and detergent

Product D: Neutral cleaner

Second test level: Cytotoxicity to Process Challenge Devices (PCD's):

- Following PCD materials are used:
 - Stainless steel X20Cr13, brushed surface, representative of non-cutting surgical instruments.
 - Silicon rubber, representative of anaesthesia equipment.
- Solutions with different concentration (1.0, 0.1, 0.01 and 0.001 Vol-%) are prepared.
- PCD's are immersed for 1 h in the test solution, then dries for 15 sec on paper and 1 h at room temperature.
- PCD's are eluted 1.5 Vol-% DMSO in cell culture medium (DMDM).
- Aliquots of 100 µl were pipetted into the cell culture plate.
- Incubation for 72 ± 6 hat 37 ± 1 °C, measurement of protein content and calculation of proliferation inhibition.

Second test level: Cytotoxicity to PCD's made of stainless steel:

Concentration		Formulation				
Vol-%	ppm	Product A	Product B	Product C	Product D	
1	10,000	0	15	100	71	
0.1	1,000	5	20	79	33	
0.01	100	3	13	33	17	
0.001	10	3	19	33	17	

Values greater than 30 % proliferation inhabitation - in red - are classified as being cytotoxic

Product A: Glutaraldehyde based disinfectant

Product B: Buffered Peracetic Acid based disinfectant

Product C: QAC + Diamine based disinfectant and detergent

Product D: Neutral cleaner

Second test level: Cytotoxicity to PCD's made of silicon rubber:

Concentration		Formulation				
Vol-%	ppm	Product A	Product B	Product C	Product D	
1	10,000	25	5	100	59	
0.1	1,000	11	0	100	33	
0.01	100	2	0	47	8	
0.001	10	20	12	25	5	

Values greater than 30 % proliferation inhabitation - in red - are classified as being cytotoxic

Product A: Glutaralaldehyde based disinfectant

Product B: Buffered Peracetic Acid based disinfectant

Product C: QAC + Diamine based disinfectant and detergent

Product D: Neutral cleaner

Summary Cytotoxicity tests

Disinfectants are cytotoxic in diluted solutions in declining intensity:

QAC/Amine -> Glutaraldehyde -> buffered Peracetic Acid.

- Adsorption effects on surfaces seems to be dominant related to cytotoxicity potential of products on stainless steel and silicone rubber:
 - Glutaraldehyde and buffered Peracetic acid have low adsorption potential on both materials
 no cytotoxicity up to 1 Vol%
 - QAC has high adsorption potential on both materials
 => cytotoxic effects up to 0,01 Vol%.
- Cytotoxic behaviours of non-ionic surfactants seems to be dominant related to neutral cleaner:
 - => cytotoxic effects up to 0,001 Vol% in solution and 0,1 Vol% on both PCD materials.

WG-Proposal for assessment of biocompatibility

- Experimental detection of cytotoxic properties of process chemicals
 - in diluted solution (first test level) and if necessary
 - of product residues on various surfaces relevant for the intended application (second test level).
- Assessment of systemic toxicity, irritation and sensitization potential
 - based on already available data for the respective raw materials.
- Experimental detection of haemocompatibility of process chemicals depending on the intended use of reprocessed medical devices.
- Evaluation of all data within the framework of biocompatibility assessment
 - => definition of acceptance value in µg/cm² or µg/instrument.

DETERMINATION OF ACCEPTANCE LEVEL AT USER SITE

Surgical instruments

Automated processing in washer-disinfectors

Measurement of conductivity at the end of the process in final rinse water:

- Indirect method
- · Applicable, if acceptance level in solutions is high enough.
- Mainly used for validation of thermal disinfection processes in combination with alkaline cleaners and neutralizer.
- Not applicable for most of neutral cleaner, antimicrobial cleaner and disinfectants.

Lit.: Biering H, Glasmacher R, Hermann M, Schrader E: Biocompatibilty of medical devices after automated reprocessing in washer-disinfectors. Central Service 2011; 19(5): 334-339.

Surgical instruments

Manual processing

Residue extraction from medical device surface:

- Direct method proposed by IHO working group
- Crile clamps are used as PCD's.
- Residue extraction after processing with demineralized water.
- Analytical detection of key components of used process chemicals.
- Applicable for all types of process chemicals.

Lit.: Tschoerner M: Methods for determination of tolerable process chemical residues after manual processing. Central Service 2017; in print.

Thermolabile Endoscopes

Automated processing in washer-disinfectors

Disinfectant residue extraction from endoscope surface:

- Direct method
- Residues are extracted from distal end.
- Analytical detection of glutaraldehyde.
- Lit.: 1. Emmrich M, Bloß R, Martiny H: Glutaraldehyde(GA) Residues in Flexible Endoscopes. Part I: Development of an Analytical Method for Detection of GA Residues. Central Service 2014; 22(1): 46-49.
- 2. Emmrich M, Bloß R, Martiny H: Glutaraldehyde(GA) Residues in Flexible Endoscopes. Part II: Analytical Method and Factors for Detection of GA Residues. Central Service 2014; 22(1): 84-87.

Disinfectant residue determination in final rinse water:

- Indirect method
- Applicable, if acceptance in solutions is high enough.
- Analytical detection of peracetic acid.

Thermolabile Endoscopes

Automated processing in washer-disinfectors

Residue extraction from surface of PCD's:

- Method proposed by IHO working group
- Polyurethane blocks are used as PCD's.
- Residue extraction after processing with demineralized water.
- Analytical detection of key components of used process chemicals.
- Applicable for all types of process chemicals.

Lit.: Biering H: Determination of tolerable process chemical residues after reprocessing thermolabile endoscopes. Central Service 2016; 24(3): 160-164.

Steps for biocompatibility assessment and validation/verification at user site:

- Determination of tolerable residual amount of the respective products.
- Definition of conductivity values in the final rinse water for alkaline cleaners and neutralizer.
- Investigation of adsorption and extraction profiles of process chemicals with respect to medical devices.
- Development and provision of analytical methods for determination of tolerable residual amount.

Members of three working groups (in alphabetic order):

Dr. Holger Biering Dr. Richard Bloß

Dr. Erik Brückner Dr. Kai Groh

Dr. Thomas-Jörg Henning Dr. Elmar Hjorth

Markus Kamer Dagmar Martini

Alexander Müller Dr. Andreas Otte

Axel Schneider Michael Schreiner

Anna-Maria Sprünken Dr. Matthias Tschoerner

