

DGSV

Deutsche Gesellschaft für Steritgutversorgung a.V.

Dr. Gerald McDonnell, BSc PhD

Current Progress of the Updated ISO and CEN Standards on Cleaning Efficacy

Disclaimer

 Dr. McDonnell is an employee of DePuy Synthes, a Johnson & Johnson Company. The opinions expressed are those of the participant individually and are not the opinion or position of Johnson & Johnson or its affiliates

Reprocessing Cycle

McDonnell & Sheard, 2012

Objectives

- Review the current progress of the updated ISO and CEN standards on cleaning efficacy
- Discuss the scientific interpretations of cleaning efficacy requirements for their impact on disinfection/sterilization and toxicity

Definitions

- Cleaning: removal of contamination from an item to the extent necessary for its further processing and its intended subsequent use
- Clean: visually free of soil and quantified as below specified levels of analytes
 - Analytes are substances to be measured
 - Examples: protein and total organic carbon

What is important to achieve during cleaning?

- Process and any residuals
 - must not interfere with disinfection or sterilization
 - must not damage the device
 - must not leave toxic residues that may also be a patient risk

So how are we currently defining this?

- Manufactured (new) products
 - Defined by the manufacturer depending on their device classifications and regulatory approvals
 - For surgical devices, typically includes
 - Biocompatibility assessment (e.g., to ISO 10993 series)
 - · Cleanliness requirements
 - No standardized requirements
 - Minimum visual cleanliness
 - Sterilization requirements (when applicable)

- Reused product expectations
 - Also defined by the manufacturer depending on their device classifications and regulatory approvals
 - · Validated instructions for use
 - New version of ISO 17664
 - Cleaning, disinfection and sterilization validations (as applicable)
 - No standardized requirements
 - Verified during clinical use

New Cleaning Standards Under Development

- Manufactured (new) devices
 - ISO/DIS 19227 Implants for surgery — Cleanliness of orthopedic implants — General requirements
 - Currently limited to orthopedic implants, but may extend to other implantable devices

- · Reused devices
 - No general standard under development
 - ISO/CEN activities
 - ISO WD 15883-5 Washer-disinfectors

 Part 5: Performance requirements
 and test method criteria for
 demonstrating cleaning efficacy
 - Country-specific activities (examples)
 - Germany
 - · UK
 - · USA

New Cleaning Standards-Proposed Requirements

- ISO/DIS 19227 Implants for surgery-Cleanliness of orthopedic implants-General requirements
 - Visual Inspection
 - Organic contamination
 - Inorganic contamination
 - Particulates
 - Cytotoxicity
 - Bioburden (if applicable)
 - Endotoxin (if applicable)

- ISO WD 15883-5 Washerdisinfectors-Part 5: Performance requirements and test method criteria for demonstrating cleaning efficacy
 - Laboratory and Clinical testing
 - Visual Inspection
 - Choice of one or more analytes (e.g., protein, total organic carbon (TOC) etc.)
 - Cytotoxicity (if applicable)

Outline of a typical laboratory cleaning study

- Test method validation
- Choose and justify a test soil
 - e.g., coagulated blood
- Choose and justify test devices/load
- Contaminate the load, simulating clinical use
 - e.g., suctioning, articulation, cauterization
- Expose to a worst case cleaning processes
 - e.g., detergent concentration, temperature etc
- Evaluate visual cleanliness and levels of analyte
 - E.g., protein, TOC
- Pass or fail

Why Visual?

Test Analyte	Result		
Protein	Pass		
Total Organic Carbon (TOC)	Pass		

A Note on Particulates

- Examples
 - Dust, lint, debris, etc.
- Can lead to
 - Toxicity (without infection)
 - Immune reactions
 - Embolism or other blockage
 - etc...

Eye (Lond), 2014 Aug; 28(8), 958-961.

What do we find after surgery?

Device Type	Total Average Contamination/Device (Average Contamination/cm²)				
	Bacteria (log ₁₀)	TOC (µg)	Protein (µg)	Hemoglobin	
Surgical Instruments	1.48 (-0.55)	3968 (52)	14482 (244)	1680	
Flexible Colonoscopes	8.46 (4.93)	N/D	7110 (37)	1240	

Cloutman-Green et al, 2015, AJIC 43(6):659-61.

ISO WD 15883-5 Washer-disinfectors-Part 5 (Draft)

- Recommended analytes and 'clean' levels include
 - Protein: ≤3 μg/cm²
 - TOC: ≤ 12 μg/cm²
 - Hemoglobin: ≤ 2.2 μg/cm²
 - Carbohydrate: ≤ 1.8 μg/cm²
 - ATP: ≤ 22 femtomoles/cm²
 - Endotoxin: ≤ 2.2 EU/cm²
- But also, lack of cytotoxicity (or chemical residue testing)

But Some Important Considerations

- One cleaning test may not be enough to test for build-up
- Cleaning per device or per side or per cm²
 - e.g., requirements for ≤ 50-100µg protein/device
- Laboratory method validation
 - Extraction of device
 - Detection limits and dilution
 - Interference etc.
- Is one analyte enough?

Why these levels? Example: Protein

- We find high levels of protein on devices following clinical use...no surprise!
- Proteins can be sometimes easy and sometimes difficult to remove from surfaces...a good challenge
- When we do 'good' cleaning, these levels are achievable
- These levels are about 10X lower than what we can typically see as 'visual soil'
- Do these levels interfere with sterilization?
- Do these levels pose a toxicity risk?

Disinfection or Sterilization Interference

- Disinfection and sterilization processes should not be compromised, if used correctly in accordance with their label claims!
- Disinfectants and Sterilization processes are typically tested in the presence of soil
 - Examples: 5-10% serum or BSA (US-FDA), 3g/L BSA + red blood cells (EN)
 - Visual soil is ~50μg/cm²

Are these levels of protein toxic to a patient? May depend on the protein and the level introduced

- Many factors, such as the patient's immune system
- What would be considered worst case proteins?
 - Example: human complement proteins (e.g., C3b)
 - Present in blood and tissues
 - · Stable, not readily digested by the body
 - · Part of the human body's immune system, activated early in an immune reaction (e.g., infection)
 - But if introduced from a foreign source, these same "helpful" proteins can become "toxic" to the host
 - What level would be considered 'toxic' to a patient?

Cytotoxicity Test Results

	Why?	Test Condition	Protein Concentration (estimated) and Observed Cytotoxicity Score*				
			63µg/cm ²	20µg/cm²	6.3µg/cm²	2.0µg/cm²	
(CVF) Represents Ctb a foreign complement protein	CVF + 5% serum	0	0	0	0	0.63µg/cm²	
	CVF + 20% serum	3	0	0	0	0	
Horseradish peroxidase (HRP)	Present in blood and can cause tixsue damage	HRP + 5% serum	4	1-2	0	0	0
Cathepsin G Human neutrophil protein (CHN)	Present in blood and involved in initammation and cell damage	CHN + 5% serum	4	4	0	0	0
Albumin (A)	Present in blood but consider more benign	A + 5% serum	3	3	1	0-1	0-1

^{*}Cytotoxicity score ranges from 0 (no reaction) to 4 (severe reaction); <2 is typically considered non-cytotoxic

T. Kramer et al, Nelson Laboratories, 2017

Prions: A Note of Caution

- Overall, these levels of proteins (and other analytes) seem 'safe' for patients based on our experience to date
- But one exception: transmissible proteins (or prions)
 - Composed of protein
 - Hydrophobic, likes surfaces
 - Can be resistant to cleaning, disinfection, and sterilization
 - Can cause severe, fatal diseases (e.g., CJD)
 - Can be transmitted by reusable devices

Prions: What the data tells us

- Very, very low levels can be transmissible (estimated 100 to 1000 times lower than levels proposed, if all the protein was prion)
- The detectable level of protein may not correlate with infectivity of proteins (e.g., no protein does not mean no risk)
- More effective cleaning may help...but only if those cleaning processes are shown to reduce the risk of prions
- Sterilization by steam and some hydrogen peroxide gas technologies can be effective (if verified as such)

Treatment	Infectivity Reduction (logs)			
Water washing	41			
Waterwashing + 134°C x 4 min	-30			
Water washing + 134°C x 18 min	-5.5			
Enzyme cleaner 1	45			
Enzyma cleaner 2	-1.0			
Excyme cleaner 1 + 134°C x 15 min	16			
Enzyme cleaner 2 + 134°C x 18 min	-1.0			
Alkaline cleaning 1	-3			
Akaline cleaning 2	-4			
Alkaline cleaning 1 + 134°C x 4 min	>6			
Alkalina cleaning 2 + 134°C x 4 min	145			

McDonnell G. (2017). In, A. Fraine, F. A. Lambert, Jean-Yess Mailland (Editors) Principles and Practice of Disinfection, Preservation and Storilleation, pp. 208-228.

Conclusion

- Cleaning is an essential part of the reprocessing cycle and the requirements for cleaning are being scientifically defined
- New standards are under development to better harmonize the requirements for reusable device cleaning efficacy studies
- The 'clean' requirements can be justified based on practical, microbiological, and toxicological considerations
- An exception to these requirements may be in consideration to prion contamination, which requires a coordinated approach to cleaning and sterilization to reduce risk

Danke!

